728 research outputs found

    State permutations from manipulation of near level-crossings

    Get PDF
    We discuss some systematic methods for implementing state manipulations in systems formally similar to chains of a few spins with nearest-neighbor interactions, arranged such that there are strong and weak scales of coupling links. States are permuted by means of bias potentials applied to a few selected sites. This generic structure is then related to an atoms-in-a-cavity model that has been proposed in the literature as a way of achieving a decoherence free subspace. A new method using adiabatically varying laser detuning to implement a CNOT gate in this model is proposed.Comment: 6 pages, 5 figures. Substantial revision and extension of the introduction and the atoms-in-a-cavity section

    Generation of entangled states and error protection from adiabatic avoided level crossings

    Get PDF
    We consider the environment-affected dynamics of NN self-interacting particles living in one-dimensional double wells. Two topics are dealt with. First, we consider the production of entangled states of two-level systems. We show that by adiabatically varying the well biases we may dynamically generate maximally entangled states, starting from initially unentangled product states. Entanglement degradation due to a common type of environmental influence is then computed by solving a master equation. However, we also demonstrate that entanglement production is unaffected if the system-environment coupling is of the type that induces ``motional narrowing''. As our second but related topic, we construct a different master equation that seamlessly merges error protection/detection dynamics for quantum information with the environmental couplings responsible for producing the errors in the first place. Adiabatic avoided crossing schemes are used in both topics.Comment: 14 pages, 6 figures. Minor changes. To appear in Phys. Rev.

    Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle.

    Get PDF
    Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood-stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site-specific recombination in P. falciparum, capable of excising loxP-flanked sequences from a genomic locus with close to 100% efficiency within the time-span of a single erythrocytic growth cycle. DiCre-mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre-expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood-stage parasite genes

    The Candida albicans transcription factor Cas5 couples stress responses, drug resistance and cell cycle regulation

    Get PDF
    We thank Cowen lab members for helpful discussions. We also thank David Rogers (University of Tennessee) for sharing microarray analysis of the CAS5 homozygous mutant, and Li Ang (University of Macau) for assistance in optimizing the ChIP-Seq experiments. J.L.X. is supported by a Canadian Institutes of Health Research Doctoral award and M.D.L. is supported by a Sir Henry Wellcome Postdoctoral Fellowship (Wellcome Trust 096072). B.T.G. holds an Ontario Graduate Scholarship. C.B. and B.J.A. are supported by the Canadian Institutes of Health Research Foundation Grants (FDN-143264 and -143265). D.J.K. is supported by a National Institute of Allergy and Infectious Diseases grant (1R01AI098450) and J.D.L.C.D. is supported by the University of Rochester School of Dentistry and Medicine PREP program (R25 GM064133). A.S. is supported by the Creighton University and the Nebraska Department of Health and Human Services (LB506-2017-55). K.H.W. is supported by the Science and Technology Development Fund of Macau S.A.R. (FDCT; 085/2014/A2). L.E.C. is supported by the Canadian Institutes of Health Research Operating Grants (MOP-86452 and MOP-119520), the Natural Sciences and Engineering Council (NSERC) of Canada Discovery Grants (06261 and 462167), and an NSERC E.W.R. Steacie Memorial Fellowship (477598).Peer reviewedPublisher PD

    Clathrin light chains' role in selective endocytosis influences antibody isotype switching

    Get PDF
    Clathrin, a cytosolic protein composed of heavy and light chain subunits, assembles into a vesicle coat, controlling receptor-mediated endocytosis. To establish clathrin light chain (CLC) function in vivo, we engineered mice lacking CLCa, the major CLC isoform in B lymphocytes, generating animals with CLC-deficient B cells. In CLCa-null mice, the germinal centers have fewer B cells, and they are enriched for IgA-producing cells. This enhanced switch to IgA production in the absence of CLCa was attributable to increased transforming growth factor β receptor 2 (TGFβR2) signaling resulting from defective endocytosis. Internalization of C-X-C chemokine receptor 4 (CXCR4), but not CXCR5, was affected in CLCa-null B cells, and CLC depletion from cell lines affected endocytosis of the δ-opioid receptor, but not the β2-adrenergic receptor, defining a role for CLCs in the uptake of a subset of signaling receptors. This instance of clathrin subunit deletion in vertebrates demonstrates that CLCs contribute to clathrin’s role in vivo by influencing cargo selectivity, a function previously assigned exclusively to adaptor molecules

    Humanized zebrafish enhance human hematopoietic stem cell survival and promote acute myeloid leukemia clonal diversity

    Get PDF
    Xenograft models are invaluable tools in establishing the current paradigms of hematopoiesis and leukemogenesis. The zebrafish has emerged as a robust alternative xenograft model but, like mice, lack specific cytokines that mimic the microenvironment found in human patients. To address this critical gap, we generated the first humanized zebrafish that express human hematopoietic-specific cytokines (GM-CSF, SCF, and SDF1α). Termed GSS fish, these zebrafish promote survival, self-renewal and multilineage differentiation of human hematopoietic stem and progenitor cells and result in enhanced proliferation and hematopoietic niche-specific homing of primary human leukemia cells. Using error-corrected RNA sequencing, we determined that patient-derived leukemias transplanted into GSS zebrafish exhibit broader clonal representation compared to transplants into control hosts. GSS zebrafish incorporating error-corrected RNA sequencing establish a new standard for zebrafish xenotransplantation that more accurately recapitulates the human context, providing a more representative cost-effective preclinical model system for evaluating personalized response-based treatment in leukemia and therapies to expand human hematopoietic stem and progenitor cells in the transplant setting

    High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP) receptor

    Get PDF
    The human prostacyclin receptor (hIP receptor) is a seven-transmembrane G protein-coupled receptor (GPCR) that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR) mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structurefunction relationship of GPCRs. © 2014 Bill et al

    A trial protocol for the effectiveness of digital interventions for preventing depression in adolescents : The Future Proofing Study

    Get PDF
    Background: Depression frequently first emerges during adolescence, and one in five young people will experience an episode of depression by the age of 18 years. Despite advances in treatment, there has been limited progress in addressing the burden at a population level. Accordingly, there has been growing interest in prevention approaches as an additional pathway to address depression. Depression can be prevented using evidence-based psychological programmes. However, barriers to implementing and accessing these programmes remain, typically reflecting a requirement for delivery by clinical experts and high associated delivery costs. Digital technologies, specifically smartphones, are now considered a key strategy to overcome the barriers inhibiting access to mental health programmes. The Future Proofing Study is a large-scale school-based trial investigating whether cognitive behaviour therapies (CBT) delivered by smartphone application can prevent depression. Methods: A randomised controlled trial targeting up to 10,000 Year 8 Australian secondary school students will be conducted. In Stage I, schools will be randomised at the cluster level either to receive the CBT intervention app (SPARX) or to a non-active control group comparator. The primary outcome will be symptoms of depression, and secondary outcomes include psychological distress, anxiety and insomnia. At the 12-month follow-up, participants in the intervention arm with elevated depressive symptoms will participate in an individual-level randomised controlled trial (Stage II) and be randomised to receive a second CBT app which targets sleep difficulties (Sleep Ninja) or a control condition. Assessments will occur post intervention (both trial stages) and at 6, 12, 24, 36, 48 and 60 months post baseline. Primary analyses will use an intention-to-treat approach and compare changes in symptoms from baseline to follow-up relative to the control group using mixed-effect models. Discussion: This is the first trial testing the effectiveness of smartphone apps delivered to school students to prevent depression at scale. Results from this trial will provide much-needed insight into the feasibility of this approach. They stand to inform policy and commission decisions concerning if and how such programmes should be deployed in school-based settings in Australia and beyond

    Infrastructural Speculations: Tactics for Designing and Interrogating Lifeworlds

    Get PDF
    This paper introduces “infrastructural speculations,” an orientation toward speculative design that considers the complex and long-lived relationships of technologies with broader systems, beyond moments of immediate invention and design. As modes of speculation are increasingly used to interrogate questions of broad societal concern, it is pertinent to develop an orientation that foregrounds the “lifeworld” of artifacts—the social, perceptual, and political environment in which they exist. While speculative designs often imply a lifeworld, infrastructural speculations place lifeworlds at the center of design concern, calling attention to the cultural, regulatory, environmental, and repair conditions that enable and surround particular future visions. By articulating connections and affinities between speculative design and infrastructure studies research, we contribute a set of design tactics for producing infrastructural speculations. These tactics help design researchers interrogate the complex and ongoing entanglements among technologies, institutions, practices, and systems of power when gauging the stakes of alternate lifeworlds

    Stringent Constraints on Cosmological Neutrino-Antineutrino Asymmetries from Synchronized Flavor Transformation

    Full text link
    We assess a mechanism which can transform neutrino-antineutrino asymmetries between flavors in the early universe, and confirm that such transformation is unavoidable in the near bi-maximal framework emerging for the neutrino mixing matrix. We show that the process is a standard Mikheyev-Smirnov-Wolfenstein flavor transformation dictated by a synchronization of momentum states. We also show that flavor ``equilibration'' is a special feature of maximal mixing, and carefully examine new constraints placed on neutrino asymmetries. In particular, the big bang nucleosynthesis limit on electron neutrino degeneracy xi_e < 0.04 does not apply directly to all flavors, yet confirmation of the large-mixing-angle solution to the solar neutrino problem will eliminate the possibility of degenerate big bang nucleosynthesis.Comment: 11 pages, 6 figures; minor changes to match PRD versio
    corecore